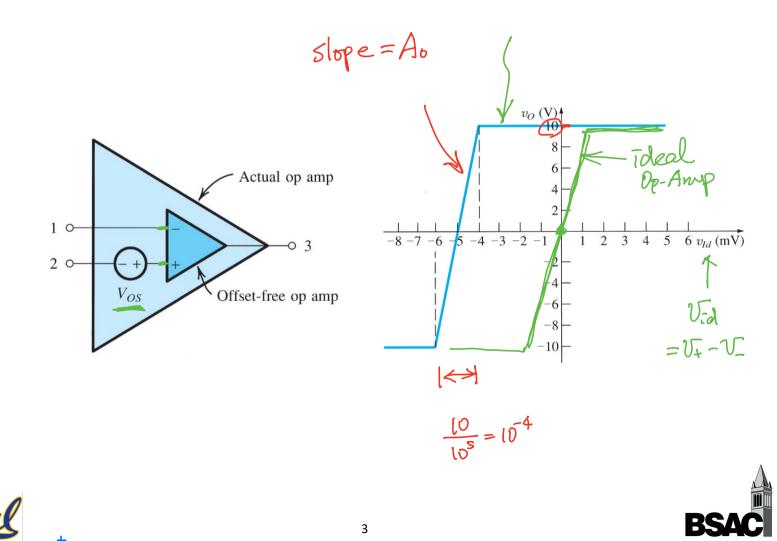
EE105 Microelectronic Devices and Circuits

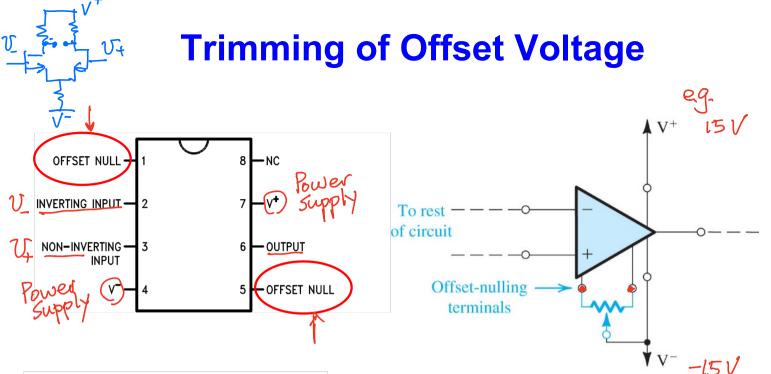
Prof. Ming C. Wu

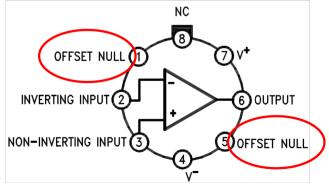
wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)


Practical Op-Amps

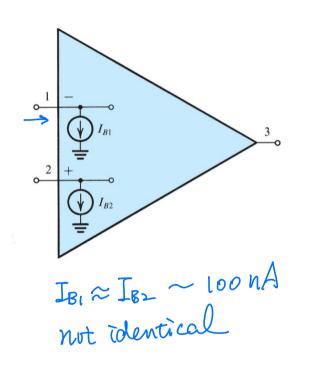
- Linear Imperfections:
 - Finite open-loop gain ($A_0 < \infty$)
 - Finite input resistance ($R_i < \infty$)
 - Non-zero output resistance (R_o > 0)
 - Finite bandwidth / Gain-BW Trade-off
- Other (non-linear) imperfections:
 - Slew rate limitations
 - Finite swing
 - Offset voltage
 - Input bias and offset currents
 - Noise and distortion





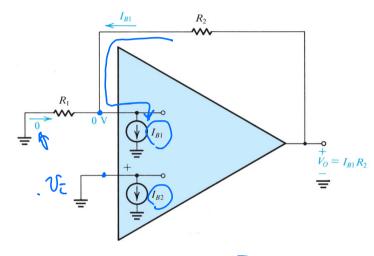
Offset Voltage

Ca



The output dc offset voltage of an op amp can be trimmed to zero by connecting a potentiometer to the two offset-nulling terminals. The wiper of the potentiometer is connected to the negative supply of the op amp.

Input Bias Currents and Offset Currents BJT: Bipolar Junction Transitor

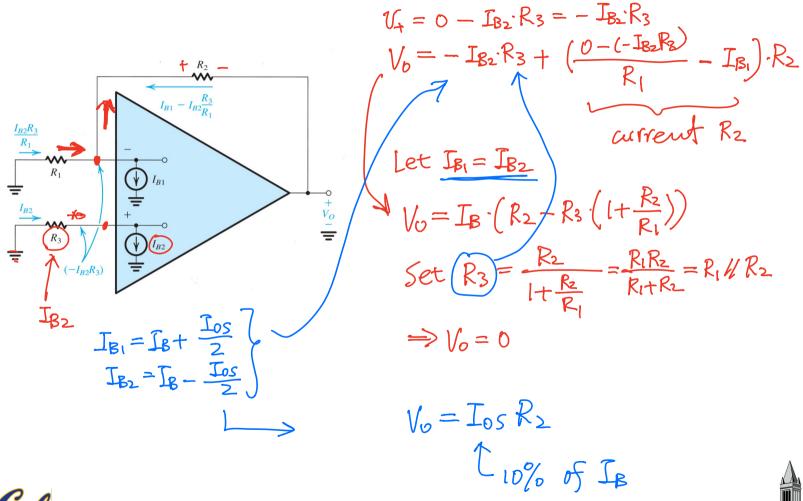

- Some op-amps (bipolar) have input bias currents that need to flow for the opamp to function properly
- They are typically very small, ~ 100 nA, but may differ slightly (by 10 nA)

$$I_B = \frac{I_{B1} + I_{B2}}{2}$$

$$I_{OS} = |I_{B1} - I_{B2}| \sim \log nA$$

Effect of Input Bias Current in Amplifier Circuit

In the absence of input voltage, the output should be zero for ideal Op Amp. However, with non-zero I_B ,


$$V_O = I_{B1}R_2 \approx I_BR_2$$

Ideal,
$$V_{c} = 0$$
, $V_{0} = 0$
 $v_{z} = 0$, $I_{B_{1}} = \frac{V_{0} - 0}{R_{2}} \implies V_{0} = I_{B_{1}} \cdot R_{2}$

Reducing the Effect of Input Bias Currents

Output Saturation

Vo

t

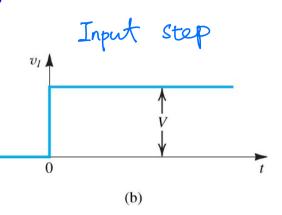
-13 V

(b)

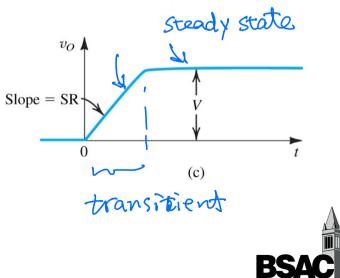
- The output voltage swing is limited by
 - 1. Saturation voltage (usually a volt or two lower than power supply voltage)
 - 2. Maximum output current (in case of small load resistance)
- Output waveform appears to be "clipped" when either condition happens

Slew Rate

Amplifier output is limited by "slew rate": maxium rate of change possible at output

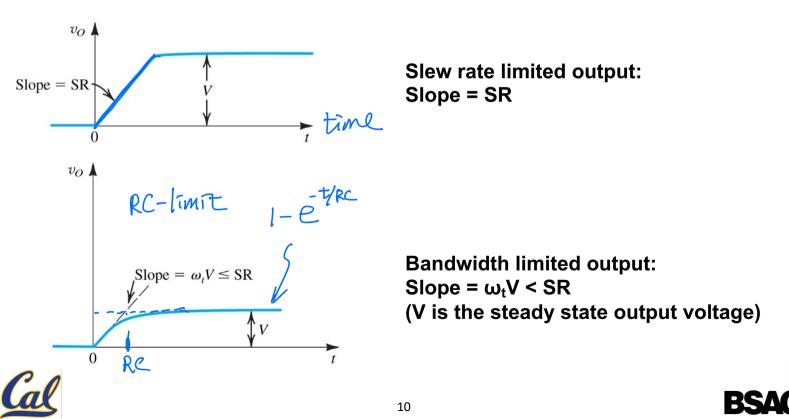

 $SR = \frac{dv_o}{dt}\bigg|_{\max}$

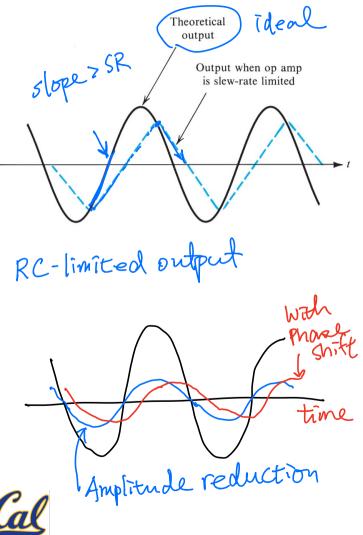
SR is specified in datasheet in $V/\mu s$


Note

SR limit is different from bandwidth limit:

- Limited bandwidth is a linear phenomenon, it does not change the shape of input sinusoid
- SR limitation can cause nonlinear distortion to input sinusoidal signal


Output not able to follow input; Slope limited by SR



Comparison of Slew Rate and Bandwidth Limits

For step function input waveform, both SR and bandwidth limits cause the output to rise with a finite slope, but there is an important difference:

Full-Power Bandwidth

For ideal sinusoidal output

 $\frac{v_o = V_o \sin \omega t}{1}$

Rate of change cannot exceed SR:

$$\frac{dv_o}{dt} = V_o \omega \cdot \cos \omega t \le SR$$

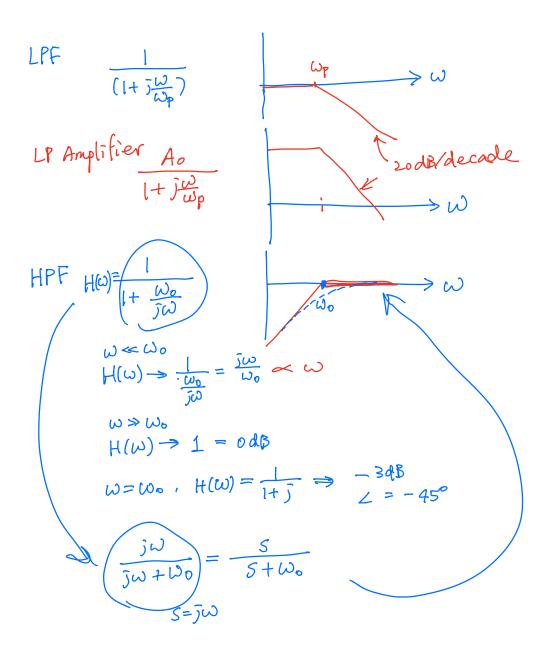
Full-power bandwidth:

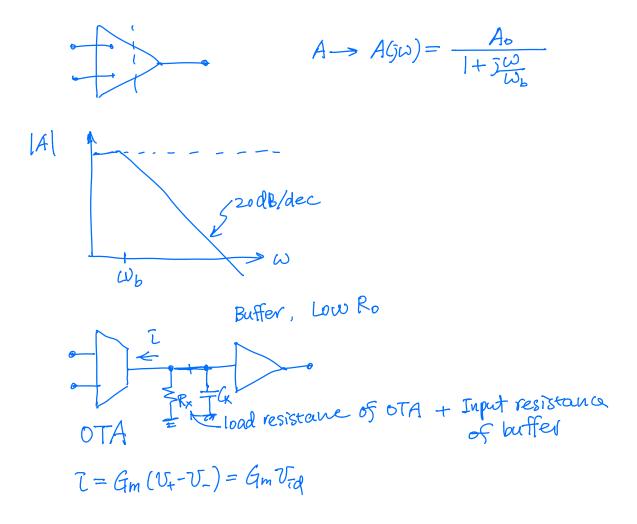
 $\omega_{M}V_{omax} = SR$

SR

11

omax


The frequency at which SR-limited distortion starts to occur for an output sinusoid with maximum rated output voltage, V_{omax} ,


Op Amp Catalog (ti.com)

https://www.ti.com/amplifier-circuit/op-amps/products.html#

Hide filters R	leset	(1468) otal parts											Email Download to Excel		
Number of Channels (#)	^		Part Number	Number	Total Supply Voltage	Total Supply Voltage	GBW	Slew	Rail-	Vos (Offset Voltage	lq per channel		Operating		Approx.
● ≥ 1 ≤ 4			Filter by part number Q	Channels (#)	(Min) (+5V=5, +/-5V=10)	(Max) (+5V=5, +/-5V=10)	(Typ) (MHz)	(Typ) (V/us)	to- Rail	@ 25C) (Max) (mV)	(Typ) (mA)	Rating	Temperature Range (C)	Package Group	Price (US\$)
1468 total parts			ACF2101 - Low Noise, Dual Switched Integrator	2	14.5	36	2	3	No	2	15.5	Catalog	-40 to 125	SOIC	2 <u>1.06</u> 1ku
Total Supply Voltage (Min) (+5V=5, +/-5V=10)	^		AFE030 - Powerline Communications Analog Front-End	1	7	26	0.67	19	No		40	Catalog	-40 to 125	VQFN	1.75 1ku
≥ 0.9 ≤ 40	•		AFE031 - Powerline Communications Analog Front End	1	7	26	0.67	19	No		49	Catalog	-40 to 125	VQFN	2.00 1ku
1468 total parts			AFE032 - Power Line Communications Analog Front End	1	7	24	3.8	75 •	No		78	Catalog	-40 to 125	VQFN	3.50 1ku
Total Supply Voltage (Max)	^		ALM2402-Q1 - Dual Opamp with High Current Output	2	5	16	0.6	0.17	No	15	5	Automotive	-40 to 125	HTSSOP, SON	1.29 1ku
(+5V=5, +/-5V=10)			BUF602 - High Speed, Closed Loop Buffer	1	2.8	12.6	1000	8000	No	30		Catalog	-45 to 85	SOIC, SOT-23	0.93 1ku
≥ 3 ≤ 105			BUF634 - 250mA High-Speed Buffer	1	5	36	180	2000	No	100	1.5	Catalog	-40 to 125	DDPAK/TO-263, PDIP, SOIC, TO-220	3.50 1ku
GBW (Typ) (MHz)	~		DRV2700 - DRV2700 High Voltage Driver with Integrated Boost Converter	1	15	105	0.550	0.6		25	13	Catalog	-40 to 85	QFN	4.95 1ku
Slew Rate (Typ) (V/us)	~				7	36	1.9	2.8		0.005	1.5	Catalog	0 to 70	PDIP	2.01
Rail-to-Rail	~		ICL7652 - Precision Chopper- Stabilized Operational Amplifier	1	/	30	1.9	2.0	In to V-,	0.005	1.5	Catalog	0 to 70	PDIP	2.91 1ku
Vos (Offset Voltage @ 25C) (Max) (mV)	~								Out						
Iq per channel (Typ) (mA)	~		LF147 - Wide Bandwidth Quad JFET Input Operational Amplifiers - Hi-Rel	4	5	44	4	13	In to V+	5	1.8	Military	-55 to 125	CDIP	
Rating	~	Π	LF156 - JFET Input Operational	1	10	44	5	12	In	2	5	Military	-55 to 125	TO-99	A-191

